I don't know Frank, these gals look like trouble.

Microbial Risks in Seafood

Dr. Mags Crumlish
Institute of Aquaculture
SUII Workshop (Safe & Nutritious Food)
January 2016
What is Food Safety?

• Centuries we have prepared and cooked food
• Understand that there are hazards inherent to food
 – 150 years ago the theory of germs
• Food hazards classified into
 – Physical
 – Chemical
 – Biological
• By far the greatest is the biological
 – Viruses & bacteria
• FOODBORNE DISEASES
Aspects of Food Safety

• 3 major components:
 – Perception
 – Regulation
 – Science (evidence)

• Foodborne pathogens is the focus of this presentation
 – Pathogen
 – Environment
 – Food production & distribution
 – Consumers
Microbial Risks & Food Security

• WHO 3 Pillars of Food Security
 – Safe Available Accessible

• Emerging human health issues
 • Contamination through consumption
 • Contamination through contact/environment

• Immunocompromised individuals
 • Medical conditions (cancer, diabetes, liver disease)
Foodborne Pathogens & Diseases

• Use the term “emerging” infectious disease:
 – New appearance in a population
 – Increased incidence/prevalence
 – Larger geographical location

• WHO describes appearance of foodborne diseases:
 – Change in microorganisms
 – Alterations in human pop & lifestyle
 – Globalisation of food supply networks
 – Introduce pathogens into new areas
 – Exposed to unfamiliar foodborne organisms when travelling
Biological Hazards and Human Illhealth

• Agents are usually described as
 – Zoonotic
 – Foodborne
 – Environmental

• Not always so simple
 – E.g. salmonella classic foodborne pathogen but can be zoonotic
 – E.g. L. monocytogenes has animal and environmental origins – zoonotic, foodborne and environmental!
Global Burden of Food Poisoning?

- People getting sick from eating contaminated food
- 2010 (WHO report)
 - 528 million cases
 - Represented 22 different food-borne diseases
 - 351 associated deaths
 - 52,000 from Salmonella infections
 - 37,000 deaths from *E. coli*
 - 35,000 deaths from Norovirus
- 40% of those affected were under 5
Surveillance pyramid shows realistic data when measuring burden of infection in a population (Tauxe et al 2010 Int. J. F. Micro 139 (S16-S28))
Cost of Food-Borne Infections

• In the UK this is estimated at £1.5 billion per year
 – Lost working days
 – Medical care
 – Approximately 20,000 people get hospital treatment
 – 500 death caused by foodborne illness

• Development of new *Foodborne Disease Strategy*
 – Campylobacter & *L. monocytogenes* (high)
 – *E. coli* 0157, Salmonella & Norovirus (high)
 – *Clostridium perfringens* (low)

Source FSA UK (food.gov.uk)
Modern Food Production

1957 1978 2005

56 d 905 g 1,808 g 4,202 g
Global Aquatic Food Production

Figure 1.1: World aquaculture production by continent in 2008 (China treated separately). Land areas are adjusted proportionally to reflect production volumes.
Global Seafood Trade Flow

Complexity!
Food Supply & Aquaculture

- Aquatic food is truly a global product
- Increasing complexity in our supply chains
 - Increased exposure
- Awareness of microbial risks

Source: www.123rf.com

Source: www.glogster.com
Food Poisoning and Seafood

• Seafood is also at risk to pathogen exposure causing human illhealth

• Source usually include:
 – Faecal contamination of the environment (shellfish)
 – Consumption of contaminated raw product
 • Home, processed, retail or catering

• In general compared with other food sources
 – Seafood it is rare
 – Higher incidence with contaminated shellfish
Product Safety - microbes

• Microbial agent must be pathogenic to humans
• Must be able to survive through food chain or distribution system
• The pathogen or toxins must be at sufficient level to cause disease
• High risk foods
 – Sold or consumed as raw or “fresh”
• Establishing infection varies with pathogen
 – Bacteria v’s viral
Highly contagious
Winter vomiting
< 20 particles infected
Aquatic environments
Contamination
R-T-E products
Fresh
 shellfish/fruit/salad

Salmonella spp. (www.globalmeatnews.com)

E. coli (www.cdc.gov)

Vibrio parahaemolyticus (www.kswfoodworld.worldpress.com)

Campylobacter spp. (www.foodqualitynews.com)

Listeria monocytogenes (www.foodhaccp.com)
Vibrio species & Seafood

- Significant % infections (consumption)
 - *V. parahaemolyticus* & *V. vulnificus*
 - Acquired through ingested shellfish (raw or undercooked)
 - GI infections (self-limiting) more common
 - CS 4-90h post consumption
 - Serious condition in immunocompromised people
 - Septicaemia, cellulitis & necrotising fasciitis

- *V. parahaemolyticus*
 - Small number of total strains hazardous to health
 - Bioaccumulate in the shellfish
 - Contamination of fish (*V. vulnificus*)
Cellulitis & Necrosis

Source: www.NHS.com

Vibrio infection
(www.consultant360.com)

www.wikipedia.org
Biggest risk to foodborne illhealth....people!
AMR

• AMR is a hot topic in human health
 – Lack of novel products
 – Increased resistance to existing products
 – Increasing prevalence of AMR strains/species

• UK move towards a “One Health” approach
 – Medical and veterinary fields
 – Tackle AMR

• Foodborne bacterial diseases of importance
 – Salmonella, *E. coli* and Campylobacter

Further reading: Vet Record November 21st 2015, pg 511-512
Models for Food Safety

<table>
<thead>
<tr>
<th>Model type</th>
<th>Identifies...</th>
<th>Used for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial risk assessment (MRA)</td>
<td>Hazards, exposure assessment</td>
<td>Relationship of pathogen occurrence in food chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predict health risks from pathogen in food</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk-based standards for food production</td>
</tr>
<tr>
<td>Predictive microbiology</td>
<td>Growth/survival/death</td>
<td>Intrinsic/extrinsic properties of food</td>
</tr>
<tr>
<td>Dynamic Infectious Disease</td>
<td>Incidence and spread</td>
<td>Spread of disease in human/animal populations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact patterns & protective immunity</td>
</tr>
<tr>
<td>Risk factor analysis</td>
<td>Analytical epidemiology</td>
<td>Response occurrence in populations</td>
</tr>
<tr>
<td>Attribution Models</td>
<td>Estimate contribution of putative sources to response</td>
<td>Burden of illhealth</td>
</tr>
<tr>
<td>Multi-criteria analysis</td>
<td>Values of variables</td>
<td>Support decision makers with making evaluations</td>
</tr>
</tbody>
</table>

Adapted from Havelaar et al. (2010) Int. J. F. Micro 139
Public Health Risk

• Can we eradicate food-borne infections?
• Control risk
• Combined approach
 – Seafood included
• Pro-active
 – Integrate surveillance
 – Advanced testing methods
• Seafood sector
 – RTE and chilled foods
Please cover the eyes of your children.
Here we have another classic example of cross-contamination:
striping the red candy canes without washing your hands after
striping the green. I've seen it all too often . . .

FOOD SAFETY REMINDER: To avoid cross-contamination, wash your hands whenever you begin a
new food preparation task. Dangerous germs and food allergens can cross-contaminate
ready-to-eat foods if you do not properly wash your hands before switching tasks.